On the optimal approximation for the symmetric Procrustes problems of the matrix equation AXB = C
نویسندگان
چکیده
The explicit analytical expressions of the optimal approximation solutions for the symmetric Procrustes problems of the linear matrix equation AXB = C are derived, with the projection theorem in Hilbert space , the quotient singular value decomposition (QSVD) and the canonical correlation decomposition (CCD) being used.
منابع مشابه
A new Approximation to the solution of the linear matrix equation AXB = C
It is well-known that the matrix equations play a significant role in several applications in science and engineering. There are various approaches either direct methods or iterative methods to evaluate the solution of these equations. In this research article, the homotopy perturbation method (HPM) will employ to deduce the approximated solution of the linear matrix equation in the form AXB=C....
متن کاملDiagonal and Monomial Solutions of the Matrix Equation AXB=C
In this article, we consider the matrix equation $AXB=C$, where A, B, C are given matrices and give new necessary and sufficient conditions for the existence of the diagonal solutions and monomial solutions to this equation. We also present a general form of such solutions. Moreover, we consider the least squares problem $min_X |C-AXB |_F$ where $X$ is a diagonal or monomial matrix. The explici...
متن کاملEla Least Squares (p,q)-orthogonal Symmetric Solutions of the Matrix Equation and Its Optimal Approximation∗
In this paper, the relationship between the (P,Q)-orthogonal symmetric and symmetric matrices is derived. By applying the generalized singular value decomposition, the general expression of the least square (P,Q)-orthogonal symmetric solutions for the matrix equation AXB = C is provided. Based on the projection theorem in inner space, and by using the canonical correlation decomposition, an ana...
متن کاملar X iv : 1 10 3 . 39 45 v 1 [ m at h . N A ] 2 1 M ar 2 01 1 On The Best Approximate Solutions of The Matrix Equation AXB
Suppose that the matrix equation AXB = C with unknown matrix X is given, where A, B, and C are known matrices of suitable sizes. The matrix nearness problem is considered over the general and least squares solutions of the matrix equation AXB = C when the equation is consistent and inconsistent, respectively. The implicit form of the best approximate solutions of the problems over the set of sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008